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ABSTRACT

A study is made of the effect of a nonlinearity on the stability
properties of a simplified version of the PIC difference equations, An
equilibrium amplitude of the fluctuations, resulting from the instability,

is determined as a function of the parameters of the method.
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INTRODUCTION

The Particle~in-Cell (PIC) technique is a finite difference method
of expressing the equations of motion of a compressible fluid; it has
been described in various reports [1,2]. The computational framework
for the method is achieved by dividing the system into an Eulerian mesh
of cells and superimposing a mesh of particles whose distribution and
mass are such as to describe the initial configuration of the fluid.

The differential equations of motion, with transport terms neglected,
are written in finite difference form relative to the system of cells.
The transport effect is obtained by allowing the particles to move
through the fixed cellular coordinate system according to the velocities
in the neighboring cells.

The method has achieved considerable success in problems involving
high velocity fluid flow and it has been recognized [1] that a large
portion of this success is attribﬁtable to the transport mechanism of
‘the method. The movement of particles across cell boundaries gives rise
to a nonlinear dissipative force which is effective in reducing the fluc-~
tuations that arise as a result of the differencing technique. This dis-
sipative term is of the form of a "true" viscosity, in that it is propor-

tional to the velocity gradient.



The same measure of success has not been obtained, however, in rep-
resenting low velocity flow. The primary reason for this is that the
velocity gradients are too small to make the dissipative force effective,
so that instabilities develop. This difficulty can be overcome by intro-
ducing into the equations linear forms of artificisl viscosity, whose
effect persists even to zero speeds. However, this solution is not
always desirable in other regions of the fluid, since the artificial vis-
cosity tends to obliterate some of the features of interest of the high
velocity flow.

But the effect of this instability can be minimized, without re-
course to artificial viscosity, by the optimum choice of the adjustable
parameters of the method. The reason is that the dissipative term pre-
vents unbounded growth of the instability. Hence, if one can determine
the upper limit of the fluctuations, which result from this instability,
as a function of the parameters of the system, the parameters can then
be chosen in such a way as to bound the instability to a tolersble level,
The primary purpose of this report is to determine the mechanics of this
dissipative process in a finite difference system and thereby achieve an
expression for the equilibrium amplitude of fluctuations in terms of the
parameters.

This study was further prompted by a desire to learn more about the
effect of nonlinearities on difference equation stability in general.
This consideration, together with the difficulty involved in the study

of more than one nonlinearity at a time, has led us to investigate a



simplified version of the PIC equations rather than the full equations.
It is hoped that the results of this analysis will thereby be applicable
to a wider range of difference methods.

The appendices to this report deal with certain improvements on the
PIC method which have not previously been published. Appendix I is con-
cerned with the form of the energy equation as it appears in this report.
This form differs from that which was employed in previous discussions of
the PIC method in that it is derived from the differemtial equation of
motion for specific internal energy rather than that for total energy.

Appendix II describes the form and effectiveness of the various types
of artificial viscosity which have been employed in PIC calculations at
Los Alamos. It also contains a discussion of a more effective manner of
expressing the viscosity terms in the difference equations than had been
in use previously. This latter section should also be gpplicable to

finite difference methods other than PIC.




PART I. STABILITY ANALYSIS OF THE PIC EQUATIONS

A PIC calculation is performed in three phases. In Phase I the dif-
ference form of the momentum and energy equations, exclusive of the trans-
port terms, is solved. Phase II is then concerned with the movement of
particles; Phase III deals with the re-partitioning, among the cells, of
momentum and energy carried by particles which cross cell boundsries.

The stebility properties of the method are completely determined,
however, by the first of these phases, since they are concerned with the
response of the system to a perturbation of steady state conditions.

For, if the fluctuations which result from this perturbation attain suf-
ficient megnitude to cause appreciable movement of particles, then in-
stability is amply demonstrated. Bubt, by restricting the study to the
equations of Phase I, the determination of stability becomes a matter of
ascertaining whether or not there is growth with time of the magnitude
of the fluctuations produced by the perturbation.

Assuming, therefore, that the system will retain its initial uni-
form density configuration, the one dimensional PIC difference equations

can be written,

«10-




n+1

n
u -u
3_1/2 3-1/2 1 [ n 31) n n
5t - psx p'j_“ - D + qj"1 - q ’

n+1

I -1
Ly-1/2 = Tya/e 3 [n 5 . -3) s+ S
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5-1/2* L3172 pJ-1/2 ep ocity, specific inter-
nal energy, and pressure at the center of the jth cell at time t = ndt,
Also, N
-‘-1' = l (un+1 + un \
3=1/2 = 2 \(§=1/2 7 “3-1/2/°
N
o = < +£un + ><un - A
% o &% * 3[¥5-1/2 * Wy /el) a2 = ¥iase)?

where a and f are constants of approximately unit magnitude and o is a
fixed representative sound speed for the system.

The q terms represent artificial viscosity; their purpose is to im-
prove the stability and accuracy of the method by smoothing out any fluc-
tuations which may develop in the system. A discussion of the form of
these terms and the manner in which they are expressed in the difference
equations will be found in Appendix II, but it is pertinent to this sec-
tion to point out one particular aspect of their expression which compli-
cates the analysis. Artificial viscosity is usually applied only in
those parts of the system that are undergoing compression; in those re-
gions which are experiencing rarefaction, additional dissipation is not

required.

-1le



The dilemma which arises in a stability analysis is that there is no

clearcut way of expressing, in the equations, the fact that the q terms
are nonzero only when their velocity gradient factor is positive. The
course which is sometimes followed in such a situation is to assume that,
in a perturbed stagnation, each point in the system experiences equal
periods of compression and rarefaction. Then, for the purpose of the
analysis, the dissipative mechanism is applied at all times but only one-
half the actual coefficient of viscosity is used., For lack of an alter-
native, this procedure will be followed in the present analysis, but the
amount of error thereby introduced will be demonstrated by experiment.
To proceed with the stability analysis, let us consider a systen,
described by Egs. (1), which has been perturbed from steady state. The

perturbation is introduced by means of the substitution

-ou + 8u

;11/2 3-1/2°

where U, and IO are the steady state values and

Then, retaining only first order terms in the variation of these small
values, Egs. (1), with a polytropic equation of state, p = (7 - 1)pI, be-

come
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Assuming that a solution of Eqs. (2) can be expressed in terms of
Fourier series, let us examine the conditions under which a typical term
can be a solution. Take as the representative terms from the series
n ~ ik(j-1/2) _n
Suj_1/2 =Ae r, (3)
n 3 ik(3-1/2) n

Then expressing Egs. (2) in terms of solution (3), we obtain

Alr - 1) = (:B(e-ik - eik) + AA(e-lk + e 2),

ol .

B(r = 1) = -2 A[(e‘ik - &) (r+ 1)},
and, on collecting terms, this becomes

Alr = 1 + 2M1 =« cos k)] + B(2ic sin k) = 0,

(%)
A[iuIO(r + 1) sin k] +B(r - 1) = 0.

A necessary and sufficient condition that Eqs. (4) have a nontrivial solu-

tion for A and B is that



(r - 1)2 +2M1 - cos k) (r - 1) + 20210 (sin2 k) (r +1) =0,

From this equation a solution can be obtained for r in the form

r=1-a-3t\[(a+6)2-4{3, (5)
where o = N(1 - cos k),
g = 0210 sin? k.

In order that solution (3) does not grow with time it is necessary
that |r| < 1. The restrictions, which this condition imposes upon the

parameters, depend on whether r is a real or complex number.,

case I: (o + 6)2 < kg

Then r is complex and

i

lz|2 =1 - 20+ 28

2
1 - 2M\(1 =~ cos k) + 20210(1 - cos k).
Thus, in order that lrle < 1, it is required that
2
A>o 10(1 + cos k).

Now, the boundary conditions on a PIC problem require that the ve-
locity vanish at the ends of the system., This limits the allowable values

of k to the values

2“ LN 3

1§
k"’ﬁ:—ﬁ': 2

vhere N is the number of cells in the system. Thus, to insure stability

for all values of k, it is sufficient to require that the inequality

a1l
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above holds when k = —=. The stability property for Case I then becomes

=] =1

2
-1
(y ) I, 8t
28x

b
> —
ac, + fluol > (1 + cos N)

But at steady state U = 0, so for Case I the stability requirement is

2
-1
(7 - 171, 8t

acy 2 (1 + cos %) o . (6)

2
Case II: (o +B) > U8
In this case r is real and Or/dk is proportional to sin k, so that

|r| attains its maximum value at k = x. For this value of k the require-

ment that |r| < 1 reduces to the condition

0<a2A < 1,
i.e,, < Bx
0L aco g{.

Notice, in Egs. (3), that k = 5 corresponds to a solution with a wave-
length of 2 cells. Hence it is the high frequency components which are
most drastically affected by excessive artificial viscosity. The reason is
that the viscosity term is proportional to the velocity gradient between
adjacent cells, so that excessive correction results in a gradient of oppo-
site direction but increased magnitude. The resultant of these excessive

corrections is a high frequency disturbance which grows exponentially.

*
Fourier components for which k = 2xn correspond to velocity profiles
which are identically zero; hence growth of these components will not
lead to instability.
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The result of violating the condition which is derived in Case I,
i.e., too little artificial viscosity, is the subject of Part II.
Briefly, rapidly growing fluctuations develop here also, until the ve-
locity magnitudes become large enough to allow the fluol term to sta-
bilize the system. This capacity permits PIC calculations to be per-
formed without any artificial viscosity vhatsocever, since a term of the
fluol type is inherent in the PIC method of moving the particles (Ref. 1,
p. 14 £F).

A plot of the predicted region of stability (for fixed values of 7,
5x, N and Io) is shown in Fig. 1. When, in the machine runs, artificial
viscosity is applied in both rarefactions and compressions, it is found
that the observed limits of stability agree perfectly with this predic-
tion. But the experimentally observed outline of the region of sta-
bility for problems in which grtificial viscosity is applied in corpres-
sions only is shown by the dashed line. The discrepancy between the area
thus outlined and the predicted region of stability indicates that our
assumption (that in a perturbed stagnation artificial viscosity applied
in compressions only is equivalent to one-half the amount gpplied in both
compressions and rarefactions) does not hold for large amounts of artifi-
cial viscosity. The reason is that, when compressions are rapidly
damped, the system experiences rarefaction considerably more than fifty

percent of the time,

-16-
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Fig. 1: Plot of the region of stability for y = 5/3, dx = 1.0, N = 6, and IO = 0.9. The solid
lines outline the predicted region and the region which is observed when artificial
viscosity is applied in both rarefactions and compressions. The dashed line corresponds
to the observed limits of stability when artificial viscosity is appliecd only in
compressions.



PART II. THE NONLINEAR BOUNDING OF THE PIC INSTABILITY

The stability analysis of Part I indicated that the PIC equations
were unstable when the coefficient of the linear part of the artificial
viscosity term was less than a certain positive definite function of the
parameters of the system. It was also observed, however, that this in-
stability was bounded in amplitude by the nonlinear part of the viscosity
terus, which corresponds to the effective viscosity of PIC. It is the pur-
pose of this section of the report to study the mechanics of this damping
force and to obtain an expression for the equilibrium amplitude of fluc-~
tuations in terms of the parameters of the system.

To attempt an analysis of the complete PIC equations, including a
provision for density variation, would be a very complicated procedure.
Instead, the study will be concerned with the effects of the nonlinearity
upon a simplified version of these equations, which has the same stability
properties as the complete equations. The results can then be extended
qualitatively to the complete equations.

Two simplifications are made — the energy equation is linearized,
and cell density is fixed as a constant. The first condition has very

little effect upon the outcome of experiments, whereas the second amounts

-18-



to a removal of the viscosity which is inherent in the PIC equetions, so
that the nonlinearity is weaker but acts in the same manner, But these
changes permit us to restrict our attention to a single nonlinear term,
thereby simplifying the analysis and generalizing the study. As a re-
sult the conclusions will be agpplicable to a wider class of nonlinear
problems,

Our purpose is to consider these equations for a fluid which has
been perturbed slightly from steady state. The linear part of the arti-~
ficial viscosity is set to zero (so the system is unstable) but the non-
linear part is present. With the foregoing changes and a polytropic

equation of state, Egs. (1) become

un+1 -
j=1/2 j..1/2___7-1 <n _ 2) __f__[ n n
5t S \L3-3/2 = Tse1/2/) T x| |Vy-3/2 t Yi-1/2
(80 ) - [ el (0 - )
3=3/2 7 Y5-1/2/) 7 %172 T Ry /2] \By-1/2 T Ygea/2/]
(N
n+l n

I, - I. - 1z N
say2 " Loy - I <II .3 2)
Bt T6X 3-3/2 " Ty /2/)?
where IO is the initial value of specific internal energy.

Computer Results

A series of problems were run on the computer in order to test the
effect of the various parameters on the final equilibrium attained by

these equations. An initial perturbation was supplied as a small velocity

-19-




in each cell, and the resulting fluctuations were observed through their
effect on the kinetic energy histories. In addition, the velocity pro-
files vere analyzed in detail through Fourier decomposition.

Figure 2, curves (a) to (h), shows the kinetic energy histories
for a series of machine runs in which the size of the system varies from
6 to 80 cells, all other parameters being fixed at the following values:
dt = 0.25, dx = 1.0, £ = 1,0, y = 1,67, and I, = 0.9. Boundary conditions
specify u = O at the ends of the region, and when the linear form of vis-
cosity is included in Eqs. (7) the final equilibrium condition is u = 0
everyvhere. Thus the kinetic energy g % u§_1/2, is a good measure of the
nonvanishing fluctuation. Since the frequency of oscillations of kinetic
energy is too high to plot on the scale of Fig. (2), the curves trace the
loci of the maximum and minimun points. The average midpoint between
these lines at late times is taken as the equilibrium value.

In these curves, notice that fluctuations grow rapidly at first (as
in a linear problem) but afe eventually bounded to equilibrium. The amount
of overshoot which precedes equilibrium, as well as the mean equilibrium
amplitude, generelly increase with the size of the system, although the
6 cell system is anomalous in both respects.

The machine results show that the course of any one calculation
usually can be divided into three phases. In the first or linear phase,
the fluctuations grow rapidly in time. This phase is terminated by the
achievement, in the mean, of velocity fluctuations large enough to give

appreciable nonlinear dissipation. In the second phase, there is a first

-20- |
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Fig. 2: Kinetic energy histories for PIC-like systems which have been
perturbed from steady state. The lines trace the loci of
maximum and minimum values of kinetic energy. Input data,
other than the number of cells in the system, is the same for
all these problems: &x = 1.0, &t = 0.25, y = 5/3, acy = 0,

f =1.0, uj = 0.01, Ij = 0.9.
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order balance between the instability and the dissipation, but also there
is a higher order imbalance leading to slow transition to final steady
state (the third phase). The origin of these phases will be discussed in
more detail in the following sections. Most of the calculations were not
run long enough to show the Phase III behavior.

Other experiments were performed in which the time interval and the
coefficient of the nonlinear term were varied. It was found that the
final equilibrium kinetic energy was proportional to (8t/f)2, which be-
havior is explained within the next few pages.

The initial perturbation in these problems was such that only the
symmetric (odd) Fourier modes of oscillation were originally present in
the system. Furthermore, the rate of growth of the even modes was ob-
served to be very small compared to that of the odd modes, so that the
nonsymmetric modes never contributed significantly to the energy of the
system. A Fourier anslysis of velocity profiles showed that, among the
odd modes at late times, one mode of oscillation usually was dominant.
When the number of cells in the system was small, the lowest frequency
mode was predominant, exceeding the other modes in amplitude by several
orders of magnitude; but in larger systems one of the higher frequency
modes generally dominated. In these latter cases the amplitude of the
dominant mode was ususlly two or three times that of the next largest
mode. Also, although the wave number of the dominant mode differed from
problem to problem, it was found that its late time amplitude was always

nearly the same. These features are illustrated in Table 1.
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Mode

No.

-

= 0 3 U W

15
L
19
21
23
25
27
29

AMPLITUDE OF SIGNIFICANT MODES AT COMPLETION

TABLE 1

OF MACHINE RUNS FOR SEVERAL PROBLEMS

The amplitudes shown in parentheses are averages

of highly oscillating values.

Number of Cells in System

(Duration of Problem in Time Cycles)

12 30
(9200) (9150)
0.140 ——
(0.002) 0.023
0.000 0.073
0.000 0.107
(0.001) 0.024
(0.001) (0.009)
(0.002)
(0.004)
(0.006)
(0.010)
(0.011)
(0.007)
(0.005)
(0.003)
(0.002)

Lo
(13,700)
0.015
0.014
0.051
0.121
0.011
0.001
0.00k
0.001
(0.002)
(0.002)
(0.003)
(0.001)
(0.001)
(0.002)
0.000
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65
(9700)

0,006
0,013
0.022
0.032
0.048
0.108
0.033
0.015
0.032
(0.003)
(0.002)
(0.002)
(0.002)
(0.003)



The Mechanics of Dissipation

In the analysis of the problem of equiﬁbrim balance, it will turn
out to be sufficiently accurate to consider an approximation to Egqs. (7).
We therefore expand Egqs. (7) in Taylor series about the center of the jth
cell and about time ndt. Neglecting terms higher than the first in dx and

5t, we have

aunj-1£2 5t aeunj-qe_ ( : afin(e £ oax 2 ( n aun-1/2>
5t T2 5t = -y -1 5=y “j-1/2'§x ’
(8)
1 "
-1/2 _ - 3-1/2
2 -, gl
Now, to zero order
aun aIn
—%——L:l 2 - -(7 - 1) =L 2:
so that
322 AT /N 352
-1/2 _ d -1/23% _ 2 3-1/2
—FUE - o) 2 (F)- (s - 1, — L.
With this substitution Egs. (8) become
™t ar" [ s
-1/2 -1/2 8{ n 2 _8_1:_] —12}
_%?L_ -(y = 1) —g;-L—+-a—x f5x|u3_1/2‘ -(y -1 Iy 5 _gx# ’
n n
BI -1/2 - —(7 ) 1)1 auj-1/2 (9)
gt 0o~ ox

The stability of Egs. (9) depends upon the sign of the quantity
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A stability analysis of these equations for a fixed value of o will verify

this. In Egs. (9) let

o> - A eikx ént
j-1/2 ’
n B ikx wt
IJ-1/2 =Be e .

Then

Alo + 01{2] + Blik(y - 1)]

]
o
-

Alik(y - 1)101 + Bo = 0.

For a nontrivial solution we must have

2
o(w + okg) + kX (y - 1)210 =0,

orxr

1 2 1. 27% 2 z
®=-7 0k ig\/ok - B(y - )71

Now for stability, the real part of w must be negative. This will be true
only when o > O.

Since at steady state c(ug_ ! /2> is definitely negative, the system
is initially unstable. But, as the velocities grow, o increases and equi-
librium is attained at o = 0. The corresponding mean velocity magnitudg
at equilibrium is therefore given by

2
-1
(7 )Iost

ul = —apgx— (10)
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If we assume & probability distribution P(u) of velocities about this
mean, the associated mean kinetic energy for a system of N cells of mass

m each is given by

ot

XE = - Nm‘/pw P(u) v du. (11)

For a normal distribution

22
P(u) = 0.538 v e 021 VU
£ ox
07 1)° ot
(7 - 1)1,
this gives

(12)

(7 - 1)210 St}

KE = 0.275 E% = 0.275 Nm [ —

v

In contrast, for a sharp distribution in which P(u) = 8(u - E), we get

[(7 - 1)210 5t
= 0.125 Nm " J . (13)

&l

1 Ty - 1)210 Bt
=3 Mm L oF ox }
A comparison of these predictions with computer results for typical
valuesg of the parameters is shown in Fig. 3. The points in the figure
indicate observed values, while the upper line is a plot of relation (12),
referring to normal distribution of velocities about the mean, and the
lovest line shows the kinetic energy, Eq. (13), which would be attained
if all cells had the mean velocity. It is seen that the actual distribu-

tion lies between these extremes, The prediction requires further analy-

sis, the results of which are shown by the middle line in the figure and
are derived below.
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Fig. 3: A comparison of observed values of mean kinetic energy near
final equilibrium with three predictions arrived at in the
text.
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Modal Exchange of Energy

Thus far, the investigation, while shedding some light on the mechan-
ics of the damping process and providing an estimate of the equilibrium
amplitude, has told nothing about the normal modes of oscillation in the
system or of the energy sharing between these modes. For this purpose
we need a more detailed study of the difference equsgtions.

Consider again Egs. (8),

du . Bt d° I 9 u
gE+_é—_a.§=-(7-1)g)—{+f8Xg;<]ulg§>’ (8)

%%='(7"1)Iog§‘

Notice that we have dropped the subscripts and superscripts for ease of
writing.

Following Kryloff and Bogoliuboff [3], we will assume that the solu-
tion of these first order equations will not differ much from the solu-
tion of the zero order equations, and we will account for this difference
by allowing the amplitude and phase of the zero order solution to vary

with time. An appropriate solution of the zero order equstions is
u = A sin kx sin (0t + @),

I= JE;.A cos kx cos (wt + @),

where

w=(7-1)~/:-[—(;k.

The first boundary condition




u=0 at x =0

is already satisfied. Applying the boundary condition

u=0 at x=1L =N 8x

determines the unique values which k may assume,

I3t

k:T, n=1’2’ooo .

Thus the complete solution of the zero order equations can be written

o
nmwx .
2 A sin —= sin
n L Qn’

u =
o

— nmx

I=vVvI, X A cos == cosQ,
0 n=1 B L n
where

nx (y - 1)VIO t

G = L Toy =t + 9.

Now, considering An and 9, as functions of time, we have

. nr(y - IWI. . ]
%‘% = Z{sin (E-I“‘—Df) I:An sin Q + An = O cos Q, + Antpn cos Qn_] },
n

so that, to impose the zero order solution, it is required that
] . o - . 1
A sinQ +AQ cosQ =0 (15)

Substitution of solution (14), subject to condition (15), into Egs. (8)

gives
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E: n(y - 1)dIO 5t { A, nn(y - 1)JE; } nmx
2L cos Q, - A L sin Q | sin ==

n

d .onmx . mx mnx Q%)
_faxa—-x(l%An sin —= s1nQn| %',A 5 cos = sin

plus an identity equation. Thus

nn(y - 1)~/_I~ 5t A nn(y - TWI. 7
n 0 [: 4 A 0 sin Q‘nJ

cosQn_ n L
=f5fosinﬂx-a Y4 sinf sing | Ta E’-‘-cosi'l’P‘-sinQu)dx.
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Integration of the right-hand side by parts and simplification give an ex-

pression for the rate of growth of the amplitudes,

. n(y - 1)' Lf Bx L nmx
A = A ST, sin 2Qn cos Q cos <
noon - 1)\/IO 5t nJo

L(y

( A . Aix mst Qh.) (16)
|§ lsn.n——L——sian A—i—cos——sn.n dx.

Consider, first, the case f = O. Combining Eqs. (15) and (16) we
obtain
cI; = - o sin® (ot +q)
n n n n’’?
which on integration gives
-1
= -t t 1
® ® & + tan (wn + Cn), (17

n

vhere Cn is an arbitrary constant., With this, then



. wt + C I

An =wA i I 2J.
Bob L (vt +C)
n n

Thus
2
= 1 1
An Kn\, + (a)nt + Cn) , (18)

where Kn is a second arbitrary constant.

This shows that with f = O we can expect a growth in amplitude for
each component, becoming linear in time for large times. This solution
is also appropriate for T # O vhen the amplitudes are small enough to
neglect the nonlinear term in Eq. (16). But as the amplitudes grow, this
nonlinear term will eventually check the instability, bringing the system
to equilibrium.

Consider now the case f % O. By neglecting cross product terms (whose
contribution is small for the significant lower frequency modes), we can
write Eq. (16) in a simpler form which illustrates the manner in which

fluctuations are damped,

T, n

. I ®x

A =Aw sin Q cos Q, [1 - M dx J[ [u] cos2 fmx de. (161)
nonn n L(y - TWI st Yo L

The amplitudes increase in magnitude until the velocity becomes large
enough to make the bracket term small. Thus, the mean value of An ap-
proaches zero to first order and An achieves its maximum value. The order
in which the modes are maximized depends upon the configuration of the ve-
locity profile and of this we can say very little at first. But the ve-

locity magnitude must continue its growth as long as there is a single
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mode for which ‘;“n > 0; during this period the bracket terms become nega-
tive for many modes and these oscillations decay.

llerein, perhaps, lies the explanation of the origin of the dominant
mode oscillation, which was discussed earlier. For consider the system
at the time when there is but a single mode which remains to be maximized.
The velocity is increasing in magnitude but all other frequency oscilla-
tions are declining, and hence the velocity profile is approaching closer
and closer to the configuration of the growing oscillation. It can be
shown that the integral in Eq. (16') is least when the velocity is com-
posed entirely of E_%E frequency oscillations; therefore the growing re-
semblance of the velocity to this frequency only serves to prolong the
growth of this final mode and the decay of all other modes. Thus the end
of the first phase of the process, which corresponds to the time of maxi-
mum velocity magnitude, finds a major portion of the energy of the system
concentrated into a single mode; this concentration increases throughout
Phase II.

To include the cross product terms and perform the analysis in general
would be difficult; however, when a particular mode, say number o, domi-

nates the system to the extent that

\ | Lx
l Al sin I sin Ql
2

anXx

T, sin Qu

~A | sin R (19)

then considerable simplification is possible. Making use of this "domi-
nant-mode' assumption, which will be done for the rest of this paper,

Eq. (16) can be written
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. Lt &x .
= - A {sin
A, Ancnn sin Q’n cos Qn cos Q Oll i Qa|

I(y - 1WI, &t ? (20)

L
o x mrx nx
. cos DX
Z\lfm L Isn.n T lcos = Cos —= dx,
m

where
11 s
Wm =T Am sin Qm.
Now
L myx nx
—_ = dx
f Isin I cos T cos T,
0
/m +n m
Q leos i t  cos 1& = n>n]
1 Z (] a
= — . ’
an 5 m+n 2" n - n>2
- o . a
and
o
&
Z‘ cos i(m + {Z, for = = k, an integer,
i=1 a othermse.

In the machine calculations, it was observed that the even modes
never contributed significantly to the fluctuation energy. This is rea-
sonable to expect, since the equations with f = O conserve symmetry and
initially only odd modes were present; by the time even modes could
couple in significantly, equilibrium of Phase II type had been achieved
and further even-mode growth was slowed to second order. Thus, with only

odd modes considered, the sum in Eq. (20) can be written




L
anx miaXx nnx
= \
Sn va f |sin T lcos T cos T dx
m

_L Viw - n| VYax 4+ n W[ha-n[ Vi + n
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3 3 15 15

. V2aw - n| | ¥]aga + n| )

: 5 - .
1 = 1+q2 T = 4q

When n = ¢, the dominant mode, only the first two terms in the sum contri-

bute significantly to Soz" Thus

L 2
;Wa——jaAasin%o

When n £ a, we will assume that S, can be limited to its first term. This
assumption will be justified presently, at least for the significant lower-
number modes, i.e., for n < 2. With this assumption the system of

Egs. (20) can be written

2 _Lr 5x
2
3 aly - 1) I, St

Aa = Aoz @, sin Qoz cos Qa< -

A, I sin Q, I),
(21)

L 5x Aalsin QOLI\)’ n # .

2
n(y - 1)1, 8%

A = 1 -
An An w, sin Qn cos Qn <

Since these equations have been derived on the basis of the dominant
mode assumption, which became effective at the close of Phase I of the
process, they are appropriate for a description of quasi-equilibrium and
equilibrium conditions, that is, Phases II and III. Without solving them
we mgy notice their late-time properties. The rate of change of all the

modes depends upon the magnitude of Aoz’ which will continue to increase,
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on the average, as long as the bracket term in the first equation is posi-
tive. Before this growth stops, however, the bracket term in the equation
for A , n # @, will have become negative. Thus the final, Phase III, equi-

librium should correspond to

3 wly - 1)210 ot Bne(y - 1)210 8t
By ? 2 TFsx < [sin QL I> ° 16T ©x ’
(22)
An - 0, n £ a,

where < > signifies an average over time. However, there is some evidence
to indicate that the equilibrium amplitude for Aa may be changed somewhat
by the effect of the sinusoidal terms in the expression for Aa. This mat-
ter will be returned to again below.

Phase II is that period, following the initial amplitude growth, when
the system is approaching this single frequency oscillation. Its duration
varies considerably ifrom problem to problem and is, as shall be demon-
strated, largely dependent upon the number of the dominant mode. Further-
more, the number of the dominant mode increases with system size, so that
ultimately the rate of energy concentration depends upon the system size.
This tact is very much in evidence in the kinetic energy profiles of
Fig. 2. The 6, 12, and 18 cell systems, for which Fourier decomposi-
tions indicate the lowest freguency mode is dominant, pass rapidly from
initial damping to the Phase III equilibrium condition of a uniform ampli-
tude, single frequency oscillation. But the larger systems, which are
dominated by higher frequency modes, exhibit profiles indicative of com-

posite frequency oscillations. Furthermore, the amplitude of these
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kinetic energy curves increases with time, indicating a slow growth in
the magnitude of the dominant mode at the expense of the secondary modes.
The variation in the calculation time required to attain a true

dominant mode distribution of energy and the dependence of this calcula-
tion time upon system size are apparent from Table 1, which shows the
amplitude of various modes at the completion of the machine runs. This
completion time is quite arbitrary in that, although all the problems
have passed the stage of initial amplitude growth, there is a marked con-~
trast in the amount of energy concentration which has taken place. The
12 cell system is the only one in which essentially all the energy of the
system has been concentrated in one mode. The other problems, one of
which was run considerably longer than the 12 cell problem, all contain
secondary modes of significant amplitude.

We have not been able to predict a priori which mode will dominate
nor to explain why the number of the dominant mode increases with the num-
ber of cells in the system; but we can show qualitatively why the secon-
dary mode amplitudes recede more slowly when the dominant mode wave number
increases. For this purpose it seems appropriate to make use of Egs. (21),
even though the system has not yet reached a true dominant mode condition.
They are considered applicable because the amplitude of the dominant mode
is so much larger than the secondary mode amplitudes that condition (19)

should be valid. Simplifying Egs. (21) we write

A = 2
Ad = %x(%x <? -3 g%;),
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An=Anwn< -gAq>,

4f 8x < |sin g}|>
g:

where

5
w(y - 1) I, 8t

Solving the first equation, we obtain
t
w
_ Re &
Ay = w2

2 (0
1 += g Re
3 g

where R is an arbitrary constant. Substituting this expression for Aa

into the second eguations yields a solution for An,

- & n/a
w

0
e

An = Kn ) . t>3/2 F} (23)
2 (0]
(J + 3 K Re

where Kn is another arbitrary constant.

Notice that as t —» o,

so that the final equilibrium solution is the same as before. But Eq. (23)
indicates why this final solution is delayed as the value of a increases.
When & = 1, as in the 12 cell problem, the smallest possible value of the
exponent is three, so that all the secondary modes lose amplitude rapidly;

but for larger values of & there exist modes for which this exponent is




approximately one, so that the decay of these amplitude curves is much
more gradual.

Iikewise this equation demonstrates why, for a fixed value of «,
the high frequency vibrations are damped much more rapidly than the lower
frequency ones, substantiating our assumption that the high frequency con-
tributions to Sn could be neglected when n < 2c¢. This rapid decay of the
high frequency modes is apparent in Table 2, which, for a system of 4O
cells, compares the amplitude of significant modes et an earlier Phase II
time with those at problem completion time as listed in Table 1. Notice

also, in Table 2, the growth of the dominant mode amplitude.

TABIE 2

AMPLITUDE OF SIGNIFICANT MODES AT EARLY AND LATER
EQUILIBRIUM TIMES FOR A SYSTEM OF 40 CELLS

Time Mode Number
1 3 5 T 9 11 13
7, 300 0.015 0.016 0.053 0.093 0.061 0.022 0.017
13,700 0.015 0.01k4 0.051 0.121 0.011 0.001 0,004

Now as the amplitude of these high frequency vibrations begins to
change rapidly, their phase angles once again assume a strong time depend-
ency as a result of the condition expressed in Eq. (15). These complica-

tions are made apparent in the computer results by rather erratic varia-

tions in the amplitude and period of these high frequency oscillations at

late times. The irregular character of these oscillations is indicated in
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Table 1 by parentheses around their average amplitude value,

On the other hand, in the larger systems, the lower frequency oscil-
lations are extremely uniform in both amplitude and period at the time
that these computer runs were completed. This would indicate that the
dominant mode amplitude has not as yet changed much from the value which

would meke A = O in Eq. (21), i.e.,

:rr2(7 - 1)2:[0 ot
Aa = 8f dx ¢

(2k)

And, indeed, the dominant amplitudes in Table 1 do not vary mich from
this value; the greatest variation is 13%.

Since this rather slow rate of growth of the dominant mode is some-
what at odds with what one would predict from Eqs. (21), it is perhaps
worthy of some additional comment. Notice in these equations that the

expression for Aa is a product of two factors,
Aa @, sin %1 cos Qa

and

2 bf Bx . >
- - A sin Q ™

The term in parentheses is positive for the Phase II dominant mode ampli-
tudes given by Eq. (24), and hence any slowing down of the rate of growth
mist result from the first term. This could happen if the first term was
épproaching an oscillating function of time, in which case the product of

the two terms would oscillate and Aa would experience alternating periods
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of growth and decay. As this first term becomes a sinusoidal function,
Ad vanishes on the average and the system reaches final equilibrium.
There is some reason to believe that the final equilibrium state,
which these machine problems are approaching, is characterized more by
the sinusoidal nstbure of this first term than by the vanishing of the
term in parentheses. Evidence in support of this is given by the ampli-
tude of the dominant mode of the 12 cell system at problem completion
time. Both the extreme concentration of energy into a single mode, evi-
dent in Table 1, and the uniform kinetic energy amplitude of Fig. Zb in-
dicate that this 12 cell problem is at least very close to a final equi-
librium state. And yet the dominant mode amplitude for this problem is
0.140, which is only T6% of the value that would meke the term in paren-
theses in Eq. (21) vanish. Hence the constancy of the dominant mode
amplitude must result from the vanishing on the average of the first term.
This matter will be referred to again in the discussion of final

kinetic energy predictions.

Predictions
Consider, now, an estimate of the total kinetic energy of the system
on the basis of this Phase II dominant mode amplitude [Eq. (24)]. The

kinetic energy in the Jjth cell is given by
i - & - 1
=2Y YA sin ma(J - %) sin @ A sin n(J ) sin Q ,
2nan N m n N n

so that, withm =1,

s 1
j=1/2 T4Ln



and

< KE > = L < KE,

N 2
> = e
3 j=1/2 8 % An °

Assuming that the dominant mode contains essentially all of the energy in

the system, we have
(y - 1)210 ath
Ef dx *

<KE > = % [ (25)
This prediction is shown as the middle line in Fig. 3. The agreement is
consgiderably better (at this stage) than that obtained in the first analy-
sis; most of the discrepancy can be attributed to the actual strength of
the neglected secondary modes,

But from this intermediate stage of equilibrium we expect the kinetic
energy profile to rise rather slowly as the dominant mode amplitude ap-
proaches its asymptotic value given by Eq. (22). Since the asymptotic dome-
inant mode amplitude is 3/2 the value used in the kinetic energy determina-
tion above, we might expect that the kinetic energy of the system would
eventually attain a level 9/4 higher than this intermediate plane. How-
ever, it is probable that this growth will be tempered by the fact that,
as é& becomes small, the first factor in the expression for Ad will become
sinusoidal, so that Aa will become an oscillating function of time in
Eq. (21). The final kinetic energy level should then lie at some inter-
mediate plateau, probably not far removed from the prediction made by the
first analysis. Unfortunately, a prohibitive amount of machine time would
be required to enable one of these large systems to reach this ultimate
goal.
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It is also possible to obtain a fairly accurate estimate of the fre-
quency of the dominant mode at equilibrium. When the system has attained
a true dominant mode energy distribution, indicative of Phase III equili-
brium, and the dominant mode is approaching its limiting value, then its
frequency should be appronaching the natural frequency, since J)a - 0 with
.L.h, according to Eq. (15). In the 12 cell system, which is a case of
this type, the frequency of the first mode differs by less than 2% from
its natural frequency.

But for a system which has only attained the intermediate stage of
equilibrium, a prediction is somewhat more difficult to obtain. The re-
lationship between the amplitude and phase of the dominant mode in such
a system is described by Egs. (21) and (15),

1 .
Aa = —2-Aa sin 2Qa (ma - ZAalsn.n Q’a')’ 7 =

Aa sin Qa + Ad (gx -ch) cos gx = 0.

8a f ox
30y - 1WI, 5t

Since the experimental evidence indicates that the amplitude and period

of the dominant mode vary quite slowly at this stage, let us set

Ao

%

K+¢,

[}

aQt + ¢

in these equations, where { and € are higher order correction terms,

Neglecting higher order texrms, we get

K sin 20t (w - ZK|sin 9t]),

=

¢ =

~4oa



gs1n9t+x(a-ma+é) cos (at + €) = 0,

or
sin 20t (ma - ZK|sin Qt}) + Q o = O.
Now average over time and assume that < € > = 0 to get
2 3n°

For K use the Phase II dominant mode amplitude given by Eqe (24). Then

8af Bx Py - NP1 et _ 17 .
3L(y - 1)4?[; 5t Of ox 18

w
_ a4
€=z +3

Table 3 shows a comparison of this predicted dominant mode frequency with

the observed results for problems at this intermediate stage of

equilibrium.
TABIE 3
COMPARISON BETWEEN OBSERVED AND PREDICTED DOMINANT MODE
FREQUENCIES AT THE INTERMEDIATE STAGE OF EQUILIBRIUM
Frequency Number of Cells
30 40 65 80
Observed O.k27 0.331 0.370 -
17
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Application to the PIC Equations

The results which have been obtained up to now have been applicable
to a simplified version of the PIC equations. We should like to investi-
gate the extent to which these results apply to the complete PIC equations.

The primary simplificaiion made was the abandoning of the motion of
particles entirely and the assumption that every cell had constant density;
the resulting equations are expressed as Egs. (1). Then, for ease of
analysis, these equations were further simplified by linearizing the energy
equation,

Let us consider, first, the effect of this latter modification on
equilibrium attaimment. Figure 4 shows the kinetic energy histories for
two problems, both of which consisted of 4O cell systems with the same
input data as the problems in Fig. 2. The dashed lines in the figure dup-
licate Fig. 2e, while the solid lines represent the maximm and minimum
kinetic energy values for g problem in which the nonlinear terms in the
energy equation were retained. The aversge late time equilibrium kinetic
energy is 0.083 for the linearized versiop as opposed to 0.081 for the
nonlinear form. The reason why the discrepancy is so slight is that each
term in the nonlinear energy equation is of higher order in the perturba-
tion than the corresponding term in the momentum equation. Because the
perturbation is bounded to a very low level, the effect of these higher
order terms is negligible.

But the effect of the other modification, the removel of particles,

was much more pronounced. For, not only was the inherent viscosity of
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A comparison between kinetic energy histories of 40 cell PIC-like systems employing
linear and nonlinear versions of the energy equation. The dashed lines duplicate
Fig. 2e, while the solid lines trace the maximum anml minimum values of kinetic energy
for a system in which nonlinear terms were retained in the energy equation.



the method, which results from particles crossing cell boundaries, lost
to the system but, in addition, the system was deprived of the damping
effects of momentum and energy conservation. The result 1s that the
energy profiles of a PIC problem are bounded to a much lower level than
the foregoing analysis would indicate and, furthermore, the damping
effect is apparent such sooner than was the case for the simplified
method. These improvements are very much in evidence in Fig. 5, which
shows the kinetic energy profiles for a PIC problem of 4O cells with
the same input as the problems of Fig. 4 and with 4 particles per cell.
But the presence of particles is not enough to insure effective
damping of fluctuations; the number of particles per cell is also ex-
tremely important. There seems to be an optimum number of particles
per cell, below which effective damping is not attained and above which
only minor improvement is observed. In illustration, Table 4 lists the
equitibrium kinetic energy at late times of 2, 4, and 8 particles per

cell versions of the 40 cell problem illustrated in Fig. 5.

TABIE &

EQUILIBRIUM KINETIC ENERGY AMPLITUDES OBSERVED FOR 40 CELL SYSTEMS
CONSISTING OF 2, 4, and 8 PARTICIES PER CELL

Particles per Cell Equilibrium K. E.
2 ~ 003
N 0.020
8 0.01%
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Fig. 5: Kinetic energy history for a 40 cell PIC systemwhich has been perturbed trom steady
state. Each cell comtains 4 particles of mass 0.25; otherwise input is the same as
that of Fig. 2e.




However, it should not be thought that the requirement that a sys-
tem contain a minimm number of particles per cell, on the average, con-
stitutes a new restriction on the PIC method., It merely reflects the '
need for proper resolution of the fluid within the cells.

Once this basic requirement is satisfied, it appears that the rela-
tionship between equilibrium kinetic energy and the parameters f, dt, and
®dx, which was obtained from the analysis of the simplified equations
[Eq. (25)], holds at least qualitatively for the PIC equations as well.
But, whereas that analysis predicted that the equilibrium kinetic energy
would vary quadratically with the ratio &t/(f 8x), the PIC experiments in-
dicate that the varigtion is slower than that and depends upon the param-
eter which is changed in the ratio. Furthermore, in a PIC problem the
permissible fluctuation of kinetic energy (and therefore the size of the
ratio) is limited by the fact that velocities must remain well below the
magnitude by which particles can be moved one cell length in a time cyecle,
i.e., |u| < 5x/5t. Once this condition is violated, the fluctuations will
no longer be bounded in amplitude.

Figure G shows the kinetic energy histories for a series of problems
in which the ratio above is halved by varying each of the parameters in
turn. The top profile is a duplicate of that in Fig. 5 except that the
vertical scale is doubled in Fig. 6. The next three profiles in this
figure demonstrate the effect on kinetic energy of doubling the viscosity
coefficient, £, and the cell length, ®x, and of halving the time interval,

dt, respectively. Note that the change in the time increment had a much
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This series demonstrates the effect of various parameters on
the kinetic energy history of a 40 cell PIC system which has
been perturbed from steady state. Except for the changes
noted, the input data is the same as that for Fig. 2e, in par-
ticular, £ = 1.0, &x = 1.0, ot = 0.25.
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greater effect on the kinetic energy profile than either of the other
parsmeter changes.

The importence of the time increment on instability bounding, as
compared to the effect of the other parameters, persists even to zero
values of the artificial viscosity. This is evident in Fig. 7 which
shows the effect of doubling the cell length and halving the time inter-
val in a system in which the only viscosity present is the effective
viscosity of the PIC method (Appendix II).

A comparison of Figs. 6 and 7 is demonstrative of the fact that the
introduction of nonlinear artificial vigcosity into a PIC calculation
will not accomplish a great deal in the way of instability bounding.

This means of controlling fluctuations in what should be a stagnant re-
gion of the fluid should especially be avoided in problems where one ex-
pects large velocity gradients. A far better way of controlling these
fluctuations is to place an upper limit on the time increment. Once the
other parameters of the system have been chosen, this limit may be deter-
mined by introducing a perturbation into an otherwise stagnant system and
varying the size of the time interval until a tolerable kinetic energy
level is obtained. In many cases the limit on the time increment thus de-
termined is less restrictive than that required to preserve stability in

the regions of high velocity flow.
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Fig. 7: Kinetic energy profiles demonstrating the effect of changes in
the space and time increments of a 4O cell PIC system which is
entirely free of artificial viscosity. Except for the changes
noted by each profile and the fact that f = O, the input data
is the same as that of Fig. 2e.



APPENDIX I. THE FORM OF THE PIC ENERGY EQUATION

In the original PIC method the energy difference equation was derived
from the differential equation

d 0
TN S G0 (a1

where E is the total energy (the other quantities were defined in Part I).
Using this difference scheme the method was nonconservative of energy in
Phase I.

Energy conservation can be obtained in the PIC method by using as a

basis for the energy difference equation the differential equation

oI oI _ du
P§g tPUSK T P %

which is equivalent to Eq. (A-1). Dropping the transport term in this

equation and transforming to difference notation we have

N.m oI P
PO/ Pya/o ( i 2>
5x ot = T otx \U3-3/2 T Y3e1/2)?

where N, represents the number of particles in cell j and m is the mass

J
of a particle. The velocity, u, in this equation is then replaced by its

time average over Phase I, U. With this change the Phase I momentum and
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energy equations, with artificial viscosity terms neglected, appear as

follows:
~ - B
Y3-1/2 7 Yyaa/2 t < g=3/2 = J+1/2> (a-2)
ot p
~ _ .n -1/2
T2 = T2t 2Nnm (a 3/2 " J+1/2>’
J

where the tilde symbolizes the fact that these terms do not as yet in-
clude the transport effect.

To see that this differencing technique, together with the proper
boundary conditions, does conserve total energy, observe that at time t

the total energy of the system is
2
n 1(n
B z Nnm[a /2% <uj-1/2> ]
whereas Dby the end of Phase I it has changed to

E - ZN"H[m/e -1/2”

the total change being

J » _ 2 . }
oF = J-§1 NIJlm [13-1/2 B I?—1/2 T Y5172 <uj—1/2 - “3-1/2) ’
J s/
5t n - n -—
=7 JE] [(%4/2“3-3/2 * Pyz/0%5u1 /2> (a-3)

< n u + po u é)]
= \Ps+1/2%5-172 T Py /2/ )




after rearrangement of terms. This equation is now in conservative form
and, in terms of the fictitious cells beyond the system (Jj = O and

j=J+ 1), can be written

aE-E’E(na fpt 0, =P . -n’a?)
=2 \P1/2% /2 T Pa/M/e T Paa/etsa/2 T Paar/etaa )2/t

Since the system is considered to have rigid boundaries the velocity must

- = = an,d = e
vanish at both ends; thus u_l/2 u1/2 uJ_1/2 uJ+1/2 always,
Iikewise du/dt = O at each boundary so that P_/2 = p1/2 and pJ_]/2

= pJ+1/2 by Eq. (A-2). Energy conservation then follows from these bound-

ary conditions.
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APPENDIX II. ARTIFICIAL VISCOSITY

Inherent in the PIC method is a diffusion térm which is proportional
to velocity magnitude. This was demonstrated in Reference 1, p. 15 1T,
by forming the Taylor expansions of the difference equations which repre-
sent all three phases of the PIC method. The resulting equations, with

higher order terms neglected and subscripts dropped, were

du du _ 3 (., du
°§€+°“*a;“§§+a—x<" B‘§>

S \2
oI oI _ du 9 , OI (?u
o‘“at“p“az“Ps;*—ax(* "‘ax)”' —ax>’

where

A = 3x pu

L=

is called the effective viscosity coefficient. Comparing these equations
with the momentum and energy equations expressing one dimensional compres-

sible fluid flow,

du
oI oI _ Ju

PR HRT TP X

demonstrates that the L' terms have their origin in the difference method.
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The A' terms have their principal effectiveness in regions where the
velocity gradient is large or where fluctuations occur in high speed
material. In fact, it is due to the presence of these terms that the PIC
method achieves success in approximating high velocity fluid flow. This
measure of success has not been obtained in problems in which the fluid
speed is considerably subsonic.

Specifically, en important limitation of the PIC method exists when
perturbations are introduced into an otherwise stagnant fluid. ZLarge
fluctuations sbout the proper values develop in the reglon of the per-
turbation. Damping of these fluctuations will only develop as the ve-
locity increases to the point where the effective viscosity becomes im-
portant, In order to obtain rapid damping in a nearly stagnant fluid, a
dissipative force not proportional to velocity is required.

Provision has been made in the PIC method to introduce, artifically,
varisble amounts of damping forces in the form of pressure modifications.

This dissipative term is of the form

Wi/ g, 1/2D ( 3-1/2 " J+1/2>

and 1s always calculated at cell boundaries.

n
9y = p‘j acy + 3

The ac part of g is of the type discussed above since it is not pro-
portional to velocity. It is similar to a Iandshoff [4] artificial viscosity
in that CO is taken as a representative sound speed for the system. This
portion of the dissipative force is applied only when the system is exper-

iencing compression.



In Part I it was demonstrated (p. 15) that the PIC equations were un-

conditionally unstable for

2

(1 ;;)(7-1) ot I,

< = o
aco + COs o

This instability is bounded in amplitude, however, by the effective viscos-
ity of the PIC method. A comparison of the recovery from a density per-
turbation away from steady state is shown in Fig. A-1 for systems which
contain ac, type viscosity, f type viscosity, and effective viscosity only.

0

Notice that recovery is complete in the presence of ac, type viscosity but

0
that a finite equilibrium emplitude is approached in the other two cases
(see Part II).

The f part of the artificial viscosity is proportional to the effec-
tive viscosity. It may be applied either in compressions and rarefactions
or in rarefactions alone. Thus one is permitted a rather wide choice in
either bolstering, reducing, or removing the effective viscosity of the
system., Such a capability is important in those problems in which effec-
tive viscosity has a detrimental effect. As an example, when gas moves
away from a wall the effective viscosity can cause cavitation by smoothing
the velocity profile, 1In this case removing effective viscosity only in
rarefactions prevents cavitation while retaining the smoothing effect in
compressions,

‘ However, in most problems in which a rather wide range of velocity

values is encountered, better smoothing seems to be obtainable from the

acy type of viscosity than from any other type. As an example,when &
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Fig. A-1: Profiles of maximum kinetic energy from three 20 cell PIC
systems which have been perturbed from steady state as the
result of an instantaneous density imbalance. The dotted
line profile resulted from calculations employing linear
artificial viscosity (ac. = 1.0), the dashed line profile
corresponds to nonlinear artificial viscosity (f = 1.0),
and the solid line to a system which did not employ arti-
flcial viscosity.
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plane steady shock strikes and reflects from a rigid wall, one would ex-
pect the material velocity in the vicinity of the wall to come to zero.
Figure A-2 illustrates the effect on such a system of various types of
viscosity. The first profile is that for a system in which the effective
viscosity has been removed by setting f = -0.5, in the second case no
artificial viscosity has been applied, while in the third, fourth and
fifth profiles an f type, a Richtmyer-Von Neumann type, and an ac, type
viscosity have been applied respectively, all with the viscosity coetrti-
cient set equal to 1. Notice that the best damping is obtained with the
ac, type viscosity.

The effectiveness of the artificial viscosity terms depends to a
large extent on the manner in which they are expressed in the difference
equations. This is true not only in the PIC method but also in other dif-
ferencing schemes,

Let us examine the effectiveness of Eqs. (A-2) when they are modified
to include artificial viscosity. The obvious way to achieve this modifica-
tion, without destroying the conservativeness of the system, is to replace
cell pressures in those equations by the sum of the equation of state pres-
sure for the cell plus the average value of artificial viscosity at the
cell's two boundaries. But, by reason of this definition, the momentum

equation becomes

j-1/2= 1 [(n _ .0 > l(n +n _n_n>}

ot onfn LNd-3/2 7 Panfa) 3 \Jgea Y Yy T 8 T Y/
J

(A=)

du
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Fig. A-2: Velocity profiles of 40 cell PIC systems which show the
effect of a plane steady shock striking and reflecting
from a rigid wall. Each profile is lsbeled with the
type of artificial viscosity used in its calculation.
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The defect in this wmanner of differencing is apparent, In averaging
the dissipative terms over such a wide spatial range, the sensitivity of
velocity change to velocity gradient is impaired. This results in too
much smoothing in the neighborhood of shocks and, at the other extreme,
too little damping when perturbations occur in an otherwise stagnant
fluid.

Nor can this sensitivity be achieved simply by writing the momentum

equation as

du, - ) i
-1/2 _ 1 1(n n
gt ) Nm LE <?J’3/2 - pj+1/2> + <93_1 - QJ>}; (A-5)
J

for this destroys the energy conservation of the equations.

But 1t is possible to achieve difference equations which are conser-
vative and yet do not involve interpolated viscosity terms. To do this it
is necegsary to alter the derivation of the Phase I equgtions. Begin with
the one dimensional momentum and energy differential equations with trans-

port terms dropped and pressures modified to include artificial viscosity,

pg—t“-= -£—(p + q),

oI
pxg = -(p+a) 5

But now rewrite the energy equation in the equivalent form

Using this alternate form of the energy equation, we write the equa-

tions in the difference form
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where we have now written the momentum equation in the form of Eg. (A-5).
With the difference equations thus expressed, energy conservation is to

longer a probleém, For the varistion in total energy over Phase I is

~

E-E = 'jz Ngm [53-1/2 } I?-1/2 + U5/ <:J-1/2 i uf;"/?)]

) n 3 = - n n

) 8t2: L?J-1/2 <§Jﬂ1 ) u;) *Yya1/e (?3-1 - P;)
=1

_ s a n _ ,.n n - 0 . o |

T Yjar/2 kqaﬂ ) qa> " Bya1/2 (%—1 - qa> * Qq “>J_1 - (q “> }’

J

which is clearly in conservative form.

All of the problems described in this report made use of the comput-

ing scheme described by Egs. (A-6).
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